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An experimental and theoretical investigation is described on the effects of viscoelasticity and 
geometric and material nonlinearity in rubber-toughened graphite/epoxy adherends. Single-lap joints, 
with adherends of a matrix-dominated layup and a brittle epoxy adhesive layer, were tested under two 
constant loading rates to failure; axial strains were measured at several locations on the surface of the 
adherends. Aluminum and fiber-dominated laminate adherends were also studied for comparison. 
Finite element analyses of the adhesive joint were made using linear and nonlinear viscoelastic 
characterizations of the composite. The experimental work is discussed first. Then we describe the 
constitutive theory and its implementation in the finite element analysis, after which the theoretical 
ane experimental results are presented and compared. 

KEY WORDS Adhesive joints; composite materials; viscoelasticity; nonlinear finite elements; fillets; 
single lap joints. 

INTRODUCTION 

The single-lap bonded joint assembly has been shown by many authors to have a 
highly complex state of stress in its adherends. Even though it is the most widely 
used joint for testing adhesives, the eccentricity in load path causes bending in the 
adherends which leads to geometrically nonlinear adherend behavior in the form 
of large transverse displacements.' In the case of composite adherends with a 
tough thermosetting or thermoplastic resin matrix, appreciable time dependence 
may be induced by the high stresses even in the absence of an extreme 
temperature environment. For the rubber-toughened, graphite/epoxy composite 
system studied, time-dependent matrix damage such as particle cavitation and 
microcracking (and possibly other changes in the microstructure such as shear 
banding) exists along with intrinsic viscoelasticity. Time-dependent nonlinear 
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18 L. A .  MIGNERY AND R. A.  SCHAPERY 

material behavior (due to various sources) as well as large geometric nonlinearity 
(primarily due to adherend displacement) were accounted for in our mathemati- 
cal model of the single-lap joint. Two different constant load rate tests, with a 
ratio of 100:1, were conducted on single-lap joint samples to determine the 
change in axial surface strain due to time-dependence and to observe any changes 
in failure behavior. 

A particular angle-ply layup was selected for the adherend material that 
maximized nonlinear and viscoelastic effects and thus provided a critical test of 
the constitutive theory and structural analysis of the joint. A brittle epoxy was 
used for the adhesive layer in order to isolate primary time effects in the 
adherend material. For comparison, aluminum and 0" unidirectional adherend 
single-lap joints were also tested and analyzed. 

Prediction of surface strains was made with a commercially available finite 
element program augmented with the constitutive equations for the 
graphite/epoxy; for comparison, a solution based on classical beam theory was 
also used, as described in the Appendix. The constitutive theory is based on a 
quasi-elastic version of the work-potential theory developed by S~hapery,'.~ 
which accounts for changes in the microstructure, such as damage, by a set of 
so-called structural parameters (or internal state variables). For instance, these 
parameters could be identified with statistical averages of the geometry of cracks 
and voids in the material. The specific constitutive equation presented here uses a 
structural parameter which is similar in form to the octahedral shear stress in the 
matrix of a composite lamina.4 The analytical form of the lamina compliances is 
similar to that of Sun and Chen' without time-dependence; however, unlike their 
plasticity development, the model used here has been shown theoretically and 
experimentally to be descriptive of nonproportional as well as proportional 
l~ading. ' .~.~ This work-potential model was added to the finite element program 
ABAQUS (Hibbitt, Karlsson, and Sorenson, Version 4.5)' in order to predict 
surface strains. 

Materials and experimental methods are described first. A brief description of 
the work-potential theory along with its implementation into the finite element 
program is then provided. Finally, experimental and theoretical results are 
compared. Space limitations preclude giving a detailed account of all experimen- 
tal and theoretical work. For additional details the interested reader is referred to 
Mignery's dissertation,6 upon which most of this paper is based. 

MATERIALS AND EXPERIMENTAL METHODS 

Hexcel T20 145 F155-76 graphite/epoxy was used for the composite adherend 
materials with two different layups, unidirectional [ O ] ,  and angle-ply [ f40]2s. 
The 0" laminate and aluminum (6061-T6) were chosen in part to check prediction 
capabilities without time dependence, and the angle-ply laminate was selected to 
maximize nonlinear and viscoelastic effects. The specimen configuration is shown 
in Figure 1. The composite specimens were cut from 12 x 12 in. plates of 
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BONDED COMPOSITE JOINTS 19 
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Strain gage locations 

FIGURE 1 Lap joint specimen dimensions and strain gage locations. All dimensions are in inches. 
Gage locations are noted in the bottom figure by a rectangle. Those outlined in white appear on the 
opposite side of the joint. 

graphite/epoxy material having a fiber volume fraction of 57 percent; they were 
made from prepreg tape and cured according to the manufacturer’s specifications. 
Joint assemblies were formed by cutting 4.5 in. by 4.0 in. plates to be bonded 
together with a 0.5 in. overlap. The overlap area was sanded, wiped with acetone 
solvent and then measured for later bondline thickness determination. Just prior 
to bonding, the composite plates were further solvent wiped and the aluminum 
was vapor degreased. As shown in Figure 1, tabs were used to grip the legs and to 
ensure essentially axial alignment in the test machine. The alignment tabs were 
made of the adherend material. Additional tabs for gripping were bonded on 
both ends of each specimen. All adhesive bonds were made from 3M Scotch 
Weld 1838 B/A epoxy adhesive. This adhesive was used because of its essentially 
linear elastic behavior, thereby isolating most of the viscoelastic effects in the 
adherend material. The plates with tabs were assembled in a special jig to ensure 
uniformity of bondline thickness. They were heated to 150°F for 2 hours under 
5 psi pressure for bond cure. 

Specimens were then cut to 1.0 in. wide, corresponding to the dimensions given 
in the standard single-lap joint test, ASTMD1002-72. The only dimension not 
held to this standard was the thickness of the graphite/epoxy adherends. Nominal 
thicknesses for the aluminum and composite adherends were 0.06 in. and 0.05 in., 
respectively. The nominal adhesive thickness was 0.006 in. Specimens were 
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20 L. A. MIGNERY AND R. A. SCHAPERY 

strain-gaged with Micro-Measurements CEA-06-062UW-350 gages to measure 
axial strains. The gage locations and the final specimen assembly are shown in 
Figure 1. Those gages remote to the overlap region were used to verify 
near-boundary conditions under loading, being placed close to the grip applica- 
tion points (gages 1 and 6), and to observe the strain in the straps or legs, being 
placed approximately at the center of the legs (gages 2 and 5) .  In the overlap 
region, gages 3 and 4 were placed opposite one another in the center of the 
overlap while gages 7-12 were placed directly opposite the edge of the overlap. 
These latter gages were used in part to check for variations across the width. 

Aluminum and angle-ply samples were then tested at two different constant 
load rates to failure, 5 Ib/s and 0.05 lb/s; the aluminum specimens showed, as 
expected, no significant effect of rate. The 0" samples were tested only at 5 lb/s. 
Testing was done in a fixed-grip MTS axial precision machine, with strain 
measurements taken during loading by an HP9845 computer and data acquisition 
system. All tests were conducted under room temperature (75°F) and humidity 
(50%) conditions. The material characterization tests involved constant stress 
rate, constant strain rate, and creep tests as described elsewhere.6 

THE COMPOSITE MATERIAL CONSTITUTIVE THEORY 

The Hexel F155 material is a rubber-toughened graphite/epoxy which is 
measurably viscoelastic at room temperature. With the angle-ply layup [ f40]2s, 
this material has been observed to be strongly nonlinear above 30% of ultimate 
stress and to have a failure strain of nearly 7%; the creep strain at 40% of 
ultimate stress increases by 45% in 15 minutes.6 As already noted, our material 
characterization is based on a work-potential theory and the quasi-elastic 
approximation. For a linear or nonlinear elastic material, the work potential W is 
simply the strain energy density. For an inelastic, fime-independent material (with 
or without damage growth), W is the total work input for a unit initial volume, 
considering the entire history of loading. For monotone loading of a viscoelastic 
material with damage growth, one may often approximate the mechanical 
response using a work potential in which time enters as a parameter; this 
aging-like formulation is based on the quasi-elastic approximation of convolution 
integrals' and an approximate integration of the viscoelastic damage growth 
equations.' That a work potential exists for this material (at any given time) 
under proportional and nonproportional axial-torsional deformations has been 
shown by Lamborn and Schapery. lo 

In another application of the work potential theory to the characterization of 
laminates, only two-dimensional (in-plane) loading was taken into account.' In 
the present application, through-the-thickness normal and shear stresses exist in 
the lap joint region and thus a three-dimensional theory is needed. The 
constitutive equations given below are expressed in terms of principal material 
coordinates (xl, x2 ,  xj) for a unidirectional ply. Standard tensor transformation 
equations may then be used to refer them to the lap-joint coordinates (x ,  y, 2). 
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BONDED COMPOSITE JOINTS 21 

Y 

FIGURE 2 Unidirectional ply and coordinates. 

Figure 2 shows a unidirectional laminate or ply and the coordinate notation, in 
which the x1 axis is parallel to the fibers; the x3 axis is normal to the ply plane. 
The stresses ui and strains E~ (i = 1, 2, . . . , 6) are referred to the principal 
material coordinates x i .  In this discussion it will be convenient to use this single 
index notation. As is customary, i = 4,5 ,6  are used for the shearing variables; 
the relationship between single and double indexed tensor components is 

(1) 
011 = (71, (722 = 02, 033 = 0 3 ,  (723 = 0 4 ,  013 = (75 ,  0 1 2  = (76 

&11 = El, &22 = &a, &33 = &3, 2&23 = &4, 2&13 = &g, 2&12 = &g 

In terms of the single index strains, the work potential density (i.e. worklinitial 
volume) for a ply is W = W ( ( E ~ ~ ,  t), where t arises from the effects of 
viscoelasticity, as discussed above. The stresses are given by 

01 = d W / d & j  (2) 
The work W and stresses in Eq. (2) are independent of strain history. 

However, this independence is approximately true for only limited, simple 
histories,2 such as those considered in this paper. 

We have found that a simple analytical description of the stress-strain 
equations is possible if stresses, rather than strains, are used as the independent 
variables. The inverse of Eq. (2) may be obtained in the usual way by means of a 
complementary work potential density W, = W,(ui, t ) ,  

w, = - w + Uj&i (3) 
(The summation convention is employed in that repeated indices imply summa- 
tion over the index range.) By taking the total differential of Eq. (3) and then 
using Eq. (2) we obtain 

E~ = aw,/a0, (4) 
In the linear viscoelastic range, 

w, = $ij(t)uiuj 

where the compliances Sij( t )  of the composite under investigation have been 
found to have the form of a so-called generalized power law, 

Sij( t )  = s;. + st>* (6) 
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22 L. A. MIGNERY AND R. A. SCHAPERY 

where S$ and S; are constants; many vanish in view of the transverse isotropy of 
the ply and the negligible creep for loading in the fiber direction. The exponent q 
is a positive constant. 

In the nonlinear range we found that 

w, = w, + Wltq 
where 

(7) 

and z, = z,(ui) is a quadratic function of the stresses; also, A and r are positive 
constants. The start of the nonlinear range is defined by a particular value of z,; 
when z, 5 t,, where zc is a positive constant, the linear form of W,, Eq. (3, is to 
be used. Only loading behaviour is considered here; in order to account for 
differences between stress-strain behavior for unloading and loading it would be 
necessary to modify the form of W.’ 

Motivation for selection of a single quadratic function of stress z, to 
characterize the nonlinear behavior comes from the much earlier work of Lou 
and S~hape ry .~  It was found that such a parameter accounted for the effect of 
stress state on the functions used to characterize nonlinear viscoelastic behavior 
of a glass/epoxy composite with various levels of constant damage; here, we do 
not assume the damage is constant. The form of this parameter was based on the 
observation that the octahedral shear stress zoct normally can be used to correlate 
multiaxial yielding of plastics (just as for metals). As a simplification, the matrix 
was viewed as a uniformly stressed layer of material sandwiched between layers 
of rigid fiber material; i .e.,  the lines in Figure 2 at the angle 8 were imagined to 
define layers rather than fibers. Using the principal material axes, this shear stress 
is 

zWt = Ij[(al- + (a2 - L&)2 + (4 - a1)2 + 6 ( 3  + a: + 3)]1/2 (10) 
where the Cri in this equation are the stresses in a matrix layer. For a uniformly 
stressed matrix 9 and 3 6  are the same as the stresses a2 and 0 6  acting on a 
composite consisting of parallel layers of matrix and reinforcement material. A 
constant factor ve was also introduced, as defined by the relationship Bl = veu2. 
For a linear elastic, isotropic matrix in plane stress ve is the Poisson’s ratio, and 
for an incompressible elastic or rigid-plastic matrix ve =0.5. Use of these 
idealizations in Eq. (10) yielded for plane stress (83 = B4 = B5 = 0) ,  

where 
zoct = ( 2 / 3 ~ ) ” ~ ( u $  + c&)”~ 

c=3 / (1 -ve+v%)  

As reported by Lou and S ~ h a p e r y , ~  a finite element analysis of a linear elastic 
composite with a square array of fibers was made to predict the average 
octahedral shear stress in the matrix. Apart from a numerical factor, Eq. (11) was 
found to be fairly good approximation to this average. 
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BONDED COMPOSITE JOINTS 23 

Returning to Eq. (10) for a three-dimensional stress state, we use the 
transverse isotropy of the actual composite to obtain 

Also, let 
a1 = ve(u2 + u3) (12) 

uf = q ' ~ ,  4 = q'a;, u; = q " 8  (13) 
where q' and 11'' are free constants, just as c o r  v,. Additionally, for simplicity in 
notation, let 

C 
z, = 3c1&,/2, c1 = 1 - - , c, = q'c,  c3 = q"c (14) 2 

Equation (10) now becomes 

z, = 4 + u: + 2c,u,u, + c2u: + C3(UZ + u;) (15) 
which is the function of stress z, = t,(u,) appearing in Eq. (9). 

result in the form 
The strains may now be derived from Eqs. (4)-(9) and (15). We may write the 

(16) &. = S..a. 

The compliances S, are given by Eq. (6) for the linear range. To find Sij for the 
nonlinear range, observe that 

1 11 I 

and 3zs/dul = 0. Thus, 

Also, 
Slj  = Sj1 = syj 

S,, = S3, = S:, + 2Art:-'t9 

S23 = S32 = -~23S:2 + 2c1Arz,'-'tq 

S, = 2(1+ ~ 2 3 ) S &  + 2c2Art:-'t9 

S,, = S, = S&, + 2c,Art:-'tq 

where ~ 2 3  is the through-thickness Poisson's ratio in the linear range, vZ3= 
-$?JS;,. All other S, = 0. Note that transverse isotropy has been assumed for 
the composite. At the point of transition from linear to nonlinear behavior, 
z, = zc, the compliances in Eq. (6) must equal those in Eq. (18). This implies 

S i j  = 0 

t:-' = S&/2rA, c1 = S;,/S;, 

c2 = S&/S&, c3 = s&/s;, 
Thus, in principle, after the linear viscoelastic compliances have been found one 
may derive c l ,  c,, and c3.  Nonlinear data for any one of the compliances may 
then be used to derive A and r ;  in turn, Eq. (19b) yields zc. 
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24 L. A. MIGNERY AND R. A.  SCHAPERY 

TABLE I 
Material constants of the graphite/epoxy composite used 

in the finite element analysis 

Material constant Value 

S' 1 0.062 x 1 O P  (psi)-' 
SI 2 -0.022 x (psi)-' 
$2 0.696 X (psi)-' 
s12 0.112 x (psi)-' (s)-q 

so, 0.986 x (psi)-' 
S& 0.476 X (psi)-' ( s ) - ~  
9 0.05 
Tc (6530)' (psi)2 
r 1.7 
c3 4.2 
C 4.0 

'23 0.738 
A 1.57 x 10-13 

In practice, the power law is not an exact representation of the actual behavior, 
and therefore it may be better to use more than one compliance to evaluate the 
constants. Mignery6 employed data for &., and S, (in only the nonlinear range) 
from in-plane loading of [90In and [f40]2s laminates (at the same constant load 
rate used for the single-lap joints) to derive A, r, tc and c,; in the subsequent lap 
joint analysis it was assumed that c2 = c3 and c1 = 1 - c/2, where c is given by Eq. 
( l lb)  and ve is the (constant) matrix Poisson's ratio. It should be noted that this 
process yielded from nonlinear data c3 = 4.2, whereas c3 = 3.4 from Eq. (19c). 

Table I gives the results of the characterization. The material constants were 
used for all calculations here and in Reference [6]. That the resulting constitutive 
equations are valid for data other than that used to derive the material constants 
was shown by successfully predicting the Poisson's ratio of the [ f40]2s laminate in 
the linear and nonlinear ranges of behavior.6 

APPLICATION OF THE MATERIAL MODEL IN A FINITE ELEMENT ANALYSIS 

A commercially available finite element program (ABAQUS) was chosen which 
accommodates a user-supplied subroutine for the constitutive model of an 
element. Due to the eccentricity of load path in the single-lap joint, large 
displacement theory must be used to analyze the boundary value problem. For 
this type of analysis, ABAQUS uses the Updated Lagrangian Form, thereby 
calling upon the incremental form of the stiffness matrix. But we have 
characterized the total strains in terms of complementary work, which leads 
directly to the compliances of the lamina. Therefore, the incremental form of the 
compliance matrix needs to be developed first and then numerically inverted for 
use in the finite element solution. 

For the linear range, the incremental compliance matrix is the same as the 
compliance matrix. For the nonlinear case, differentiation is required to arrive at 
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BONDED COMPOSITE JOINTS 25 

the incremental form. The result can be written as 

A E ~  = gij A q  

where the incremental compliances sij are 

where W, and W, are in Eqs. (8) and (9), respectively. Completing the 
differentiation yields a symmetric incremental compliance matrix as given below: 

A E l 1  $11 $12 $13 0 0 0 A 0 1 1  

$2 $3 $4 $25 $6 

AY23 - - 1; '$ $34 $33 $34 $44 $45 $35 $46 $361 A 0 2 3  (22) 

A y 1 3  g3S $445 $55 $S6 Aa13 

AY12 $6 $36 $46 $56 $66 A 0 1 2  

in which 

sl, = SY1 

$12 = sY2 

S13 = sY2 

G3 = -~23S:2 + 2Art,'-'tq 
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26 L. A. MIGNERY AND R. A. SCHAPERY 

where 

(24) 
d2 
at, 

W, = 7 ( W1t9) = Ar(r - l)t:-2tq 

Numerical inversion then gives the incremental moduli. These must then be 
transformed by rotation to the finite element structural axis system. 

Standard transformation matrices are used for this rotation giving 

{Ad} = [E]{AZ} (25) 
where {Ad} and {AE} are the incremental stresses and strains in the finite 
element coordinate system and [ E l  is the transformed incremental stiffness matrix. 
Note that there are still six components of stress and strain in the above equation. 
Plane stress elements are used in the finite element analysis, which will be 
discussed further below. Imposing plane stress (Adzz = Adyz = Adx, = 0) on Eq. 
(25) gives { Adxx} [ E L  3:2 c3]{ AExx} 

A a x y  E:3 c'& Ez3  APxy 

in terms of plane stress moduli E*. A complete reduction of Eq. (25) to Eq. (26) 
can be found in Ref. [6] .  

For a standard finite element modeling of one layer of elements per composite 
ply, the above formulation is used by giving the appropriate angle of each lamina 
and the corresponding material properties Sll, S12, Sg2, S&, A ,  r, q, c, c3 and ~ 2 3 .  

Their values are in Table I. The through-thickness Poisson's ratio vZ3 was 
determined from standard micromechanical equations. " 

If this ply-by-ply modeling is used with the angle-ply laminate for a standard 
tensile sample configuration, the resulting strain is that of a unidirectional lamina. 
This inconsistency is caused by the condition of plane stress used for the finite 
element system. In reality, for the angle-ply (neglecting free-edge effects) a 
further condition exists: 

Equation (26) for plane stress does not satisfy Eq. (27) because the plies are 
considered individually. We must first model each pair of k0 plies. In order to  
avoid a full three-dimensional analysis, but still account correctly for angle-ply 

Adyy = c':2 E:2 E& AEyy (26) 

APx, = APY, = 0 (27) 
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BONDED COMPOSITE JOINTS 27 

orientation, we have lumped the ply pair into one element and then required the 
element strains Ajjxz and Ajjyz to be zero. For the matrix given in Eq. (25), this 
leads to angle-ply coefficients which satisfy 

= c z 5  = c 2 3 ,  c 3 5  = c 3 3 ,  c556 = c36, el4 = 

c 2 4 =  c25, c 3 4 =  c3.j~ c#= c 4 5 9  c&= c.56 (28) 

thus simplifying the expressions derived for E: of Eq. (26); they can be found in 
detail in Ref. [6]. It should be emphasized that ply equations (22) and (23) were 
used to predict behavior of each angle-ply pair, and the result was used in a plane 
stress, finite element formulation. From the strain response of each ply pair, one 
may calculate the stresses within each ply using the ply theory, Eq. (22). 

FINITE ELEMENT MODEL OF THE JOINT ASSEMBLY 

Shown in Figure 3 is the type of mesh used for analysis of the adhesive joint. The 
particular mesh shown was used for the aluminum and 0" unidirectional 
composite adherend assemblies; for the angle-ply [ f40°]2s laminate each f40 
ply-pair was represented by one element in the y direction, and by the same size 
elements in the x direction shown in Figure 3. In all analyses plane stress was 
assumed, in that for the forcedarea acting on the ply-pairs, a, = txz = tyz = 0, 
where z is normal to the page. (With aluminum adherend testing and strain 
prediction we found that plane stress conditions worked well in the straps and 
joint, although there is clearly a three-dimensional stress state in and close to the 
overlap region and the grips.) For the unidirectional laminate, the solution was 
found by iteration on the stresses a,, uy, tXy. However, iteration on the six 
lamina stresses in the principal material coordinate system was used for the 
angle-ply laminate. 

i, 

..... 
FIGURE 3 Finite element model used for single-lap joint analysis; note that the vertical scale is 
greatly expanded. The wide solid lines represent the many small elements shown in Figure 11. 
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28 L. A. MIGNERY AND R. A. SCHAPERY 

- 

As noted previously, all structural analyses were made with the finite element 
software package ABAQUS, augmented with the above material model. Pre- and 
post-processing routines were developed to evaluate finite element mesh designs 
and predict strains. Eight-noded 2D continuum isoparametric elements were used 
throughout. Shown in Figure 3 is the typical model used along with boundary 
conditions which match the experimental, non-rotating grip application. The total 
length of the mesh is 7.5 in. with a 0.5 in. overlap and thicknesses of 0.06 in. and 
0.05 in. for the aluminum and composite adherends (respectively) and 0.006 in. 
for the adhesive. Two layers of elements were used through the adhesive 
thickness. Strain gage areas were modeled by one element (in the x-direction) in 
the straps, six elements at the edge of the overlap, and three elements in the 
center of the overlap. The strain predictions used were an average of the nodal 
strains of the elements in these areas. Most predictions were made using 
geometrically nonlinear elements. Although not discussed in detail here, predic- 
tions using geometrically linear finite elements are included in the results for 
comparison. These are designated later by the letters LFE in the figure legends. 

Composite properties uses for all analyses are given in Table I. Linear elastic 
material properties were used for the adhesive in all cases; these were taken as 
handbook values, E = 7.0 X 105 psi, Y = 0.40. For the aluminum, E = 10.2 x 
lo6 psi and Y = 0.33. Time increments for the finite element analysis were scaled 
inversely with the rates used for the experimental tests, 5 lb/s and 0.05 lb/s until 
failure. The FE theory is plotted using points, and the points indicate the actual 
steps used in the analysis. 

The effects of geometric nonlinearity, which are primarily due to transverse 
displacement of the straps rather than large strains, are illustrated in Figure 4 for 
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FIGURE 4 Predicted axial strains in top surface of aluminum adherend in a single-lap joint. 
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aluminum adherends. The strains at the far right end in the grip region are 
essentially those for a bar under uniform axial stress. In most of the strap the 
strain is due primarily to axial stretching plus simple bending. The difference 
between the strain in the strap and in the grip region is therefore due to bending. 
It is seen that linear theory (LFE) predicts a considerable amount of strain due to 
bending. However, at the highest loads the strain due to bending over a wide 
central portion of the strap is quite small compared with the total strain. Indeed, 
for high loads, in this region the strain response is approximately the same as for a 
bar under uniform, uniaxial tension. 

In the Appendix, classical beam theory is used to obtain analytical solutions for 
the lap-joint specimen with and without large displacement effects. This theory 
has been found to agree with the strains in Figure 4 (except close to overlap and 
grip) and in Figure 5 .  Thus, one may consider the results in Fig. 4 to be 
representative for any linear material; the effect of different values of axial 
modulus disappears when load/modulus, instead of load is used as the parameter. 

[O] 8T- GR/EP Lap Joints: 

center strap gage location 

2 A  -average 2 h 5  
28  -overage 2 h 5  
LFE -elastic material 
NLFE -elastic material 

2 A  -average 2 h 5  
28  -overage 2 h 5  
LFE -elastic material 
NLFE -elastic material 

d ------ --- - -- -. 

FIGURE 5 Strains in the center of the strap in the [ O ] ,  adherend. 
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30 L. A. MIGNERY AND R. A. SCHAPERY 

RESULTS AND DISCUSSION 

Fracture behavior and three-dimensional (width) effects 

Failure of the 0" adherend and aluminum specimens always occurred in the 
adhesive. For the 0" assembly, failure strength (the failure load divided by the 
bond area) was approximately 3500psi; for aluminum it was 2500psi, in 
agreement with the manufacturer's given strength. With regards to the viscoelas- 
ticity of the angle-ply adherend specimens, experimental results generally 
indicated that a redistribution of strain occurred in the single-lap joint with load 
rate. Failure was found to occur always in the overlap region, but in the adherend 
for the fast rate and in the adhesive for the slow rate. The failure strength of this 
assembly was approximately 2250psi for the slow rate and 2750 for the fast rate. 
A detectable three-dimensional failure occurred with the slow rate, in that a 
thumb-nail type of curved striation pattern was present on the fracture surface of 
the adhesive layer. 

No significant three-dimensional effects were seen with the strain gages 7-12 
(Figure 1) at the edge of the overlap for the 0" and aluminum specimens. 
However , marked three-dimensional readings were observed in the angle-ply 
system. Gage readings from the outer width locations (gages 7, 9, 10, and 12) 
were typically 50 percent higher than those in the center of the width (gages 8 and 
11). The degree of three-dimensionality was more pronounced in the fast rate 
tests. That the three-dimensional effects are so large is not surprising in view of 
the high Poisson's ratio of the angle-ply laminate; it is approximately 1.0 in the 
linear range and 1.3 at high strains. 

Experimental strain readings and finite element predictions 

Strains at three of the four gage locations will be discussed for the two composite 
adherend systems. (Good agreement with theory was found for the aluminum 
adherends.6) The gages at the center strap location, 2 and 5, provide a look at a 
region of more beam-like behavior than in the overlap region. The central and 
edge readings for the overlap will be investigated as well. 

[O], Adherends 

Unlike the angle-ply, the 0" laminate is free from significant material nonlinearity 
and rate effects in the straps. Shown in Figure 5 are the strain measurements in 
the center strap location from two samples with 0" adherends and predictions 
using linear and nonlinear elastic finite element methods (LFE and NLFE); the 
abscissa is the average applied shear stress (Le., axial load/overlap area). The 
measured axial strains are from 5 Ib/s tests to failure, and are an average of the 
strain readings from gage 2 and gage 5. It can be seen that the experimental strain 
variations at this gage location are nonlinear with respect to the applied load. 
Considering the material linearity of the 0" adherend and how small the strains 
are, the nonlinearity is obviously due to large displacements. The two theoretical 
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predictions given in this figure were both made using a linear material model. It is 
seen that the plane stress, geometrically nonlinear finite element prediction is 
close to the experimental response. 

Figure 6 shows results for the center of the overlap gage location in the 0" 
adherend single-lap joint. Once again, the axial strain is plotted against the 
average applied shear stress. The axial strain is an average of the readings from 
gage 3 and gage 4 for each of the two samples shown, 2A and 2B. Experimental 
data indicate nearly linear behavior to failure for this gage location. Of all gage 
locations monitored, this location was the only one to demonstrate near-linearity. 
This is reasonable since it is located in a region where the bending moment 
vanishes. Two finite element predictions are given in this figure. The first is from 
geometrically linear finite element theory using the initial ( t  = 0) lamina com- 
pliances (LFE). Geometrically linear and nonlinear predictions give the same 
result. As can be seen, this finite element result under-predicts the experimental 
results. As shown, recalculation with the time dependent linear viscoelastic 
compliances greatly improved the predictions (NLFE-LVE) because of the 
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FIGURE 6 Strains at the center of the overlap in the [ O h  adherend 
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32 L. A. MIGNERY AND R. A. SCHAPERY 

contribution from the transient component of the shear compliance. This 
time-dependence was not observed with the aluminum adherends, and thus is not 
due to the adhesive. The gage location is in an area which is sensitive to the 
through-thickness shear modulus, wheras the center of the strap is essentially in a 
state of uniform tension, and thus is dependent only on the (constant) axial 
modulus of the adherend. 

The final presentation for the 0" strain readings and predictions is that for the 
edge of the overlap. These are shown in Figure 7. The experimental values given 
are an average of all six strain readings at the overlap edge. As with the near grip 
location, the strain is nonlinear with the applied load. Calculations of the strain 
with geometrically linear finite elements (LFE) greatly over-predicts the strain 
magnitudes, while geometrically nonlinear elements using only the initial time- 
independent compliances (NLFE) predict the strain response fairly well; the 
remaining difference has been found to be due primarily to spew fillets, as 
discussed later for the angle-ply adherend. 
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FIGURE 7 Strains at the edge of the overlap in the [O], adherend. 
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[ *40]= Adhereads 

Experimental strain readings and their predictions for the angle-ply adherend 
assembly are given in Figures 8-10 for the same gage locations as presented in the 
0" adherend discussion. Agreement between experiment and nonlinear theory is 
clearly not as good as for the 0" layup. Figure 8 shows the results for the center of 
the legs. Two samples were tested at each rate, with similar results, although for 
clarity of discussion data from only one sample are shown for each rate. The 
experimental data, which are the average of the readings from gages 2 and 5 ,  are 
not shown out to failure due to the strain limit of the gages. Notice the strain 
range is almost ten times that for the 0" laminate. The effect of loading rates in 
the angle ply system is also clearly demonstrated. 

This rate dependence has been found to be much greater than for uniaxial 
tensile samples of the same layup. It could be argued that the lap joint 
configuration produces more time dependence due to the complex state of stress; 
however, calculations indicate that the center of the strap is practically in a state 
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FIGURE 8 Strains at the center of the strap in the [f40],, adherend. 
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of pure extension. Strains should, therefore, show the same amount of rate 
dependence as seen in tensile samples. During development testing of the 
material model, the mesh for the outer leg was used for a tensile sample. Time 
dependence of the tensile strain in the angle-ply composite was predicted quite 
well using unidirectional ply data, yet in the lap-joint it was not. This indicates 
that errors due to mesh size and laminate analysis do not account for the 
discrepancy between theory and experiment in Figure 8. Also, material constants 
used in the finite element calculations were determined using the same loading 
rate as in the lap-joint experiments. Since the discrepancy between theory and 
experiment for the lap-joint occurs throughout in the loading sequence, it is 
unlikely that a propagation of any uncertainty in experimental measurements 
could cause this difference. Rather, moisture absorption and/or aging are 
believed to account for the greater time dependence as these tests were 
conducted many months after the characterization was done and the composite 
used is sensitive to moisture. Also, the time required for sample preparation (and 
consequent exposure to atmospheric moisture) was much greater for the joints 
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FIGURE 9 Strains at the Center of the overlap in the [ i40]= adherend. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
2
8
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1
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than for the laminates used in material characterization, although the full size 
plates were stored with desiccant prior to fabricating the joints. In order for the 
data from the lap-joints to match the theoretical time-dependence more closely, 
the composite used for the material characterization should have travelled along 
with the adhesive joints throughout the program. 

Results from the geometrically nonlinear, but materially linear, viscoelastic 
analysis (NLFE-LVE) show the limited range of data which are predictable 
without the addition of the nonlinear material model. 

Results at the center of the overlap in the angle-ply adherend case are shown in 
Figure 9. It can be seen that the experimental strain is nonlinear with respect to 
the applied load, indicating again the strong material nonlinearity. The moment is 
zero at this location and thus it is a region of geometric linearity. That the 
experimental strains are noticeably higher than predicted from the plane stress 
theory is believed due to three-dimensional effects stemming from the high 
Poisson’s ratio of the angle-ply layup; as noted previously, it is approximately 1.0 
at the lowest strains and 1.3 at the highest strains. Namely, plane stress theory 
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predicts transverse contraction (in the z direction) for the strap which is well over 
twice that in the center of the overlap. In the actual joint, the high strap 
contraction causes more transverse contraction and k i a l  tensile strain in the 
overlap region than predicted by plane stress theory. 

The final strains to be investigated are at the edge of the overlap, Figure 10. 
The gage readings are now an average of gages 8 and 11 at the center of the 
width; due to the strong three dimensionality (arising from the high Poisson’s 
ratio) of this angle-ply laminate and the geometry of the overlap, the strains near 
the edges (gages 7, 9, 10, and 12) were not used in the comparison with 
predictions based on plane stress. The readings in Figure 10 are quite different 
from those in Figure 7 for the 0” adherend system, in that there is now an increase 
in strain after the initial decrease. Predictions with the various material and 
geometric models are indicated in the legend. It can be seen that the only good 
prediction for the “no fillet” case is at high strains with the full material and 
geometrically nonlinear model. 

That the small strain range cannot be predicted makes one suspect that the 
source of error is not the material modeling, but the geometric modeling. Indeed, 
an examination of the samples showed that a small adhesive spew fillet was 
present on all samples. This is unavoidable in the fabrication process. Samples 
showed the excess adhesive to extend half way up the side of the adherend 
thickness and an equal distance along the leg, accounting for a size of 
approximately 0.025 in. in both directions. This area was modeled with the finite 
element mesh shown in Figure 11. Given is an enlargement of the overlap area; 
note that the thickness scale in Figure 11 has been greatly expanded. The 

FIGURE 11 An enlargement of the overlap region of the finite element model indicating addition of 
the adhesive fillet at the edge of the overlap for the [f40], adherend. The cross-hatched region 
indicates the adhesive layer and the fillet. 
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cross-hatched region in the figure indicates the fillet and adhesive layer. Also 
modeled are the strain gages at the edge of the overlap; predictions with the 
stiffening effect of the gages (E -- 106psi, Y -0.4) were nearly the same as 
without it, although with the gages the predictions were closer to the experimen- 
tal strains. Predictions using this model with fillets are given in Figure 10. The 
material and geometrically nonlinear analyses with and without the fillets are seen 
to bound the experimental data. The behavior is believed to be indicative of the 
failure of this joint; cracking began at the fillet and, therefore, the early 
predictions need the fillet stiffness for correspondence with experimental results. 
After cracking begins, the model without a fillet is closer to  the experimental 
sample. The inclusion of the fillet did not alter any predictions at other locations. 

CONCLUSIONS 

The mechanical behavior of aluminum and composite adherends in single lap 
joint assemblies has been studied experimentally and theoretically. Most of the 
results shown are for adherends made of 0" unidirectional and f40" angle-ply 
layups of a rubber toughened graphite/epoxy. Agreement between theory and 
experiment for surface strains in the overlap region and straps is quite good for 
most cases in spite of the large geometric nonlinearity; however, material 
variability possibly due to aging and/or moisture caused discrepancies, especially 
at the lowest rate with the angle-ply adherends. The angle-ply layup was 
selected to enable study of significant nonlinearity and time (or rate) effects, and 
thus provide a severe test of the constitutive theory and structural analysis 
method. The Poisson's ratio for this layer exceeds unity, which produced 
noticeable three-dimensional effects in the overlap region. The strains at the edge 
of the overlap were shown to be sensitive to adhesive spew fillets; these fillets 
were needed in the finite element model in order to bring theory and experiment 
into fair agreement. It was also found that an analytical solution (based on 
classical nonlinear beam theory) for strains in the aluminum and 0" laminate 
straps agree well with the finite element analysis. 

Overall, this study has shown how complex the mechanical response of 
adhesively bonded composite joints is. Yet many of the features of the strain 
response can be predicted. No attempt was made to predict the effect of loading 
rate and layup on joint strength, such as the observation that the joint failed in 
the angle-ply adherend at the highest rate and in the adhesive at the lowest rate. 
However, it is believed that the three-dimensional constitutive theory and type of 
structural analysis used here could be employed in a more detailed study of the 
mechanical state and strength of bonded composite joints. Failure due to crack 
growth could be investigated by accounting for defects such as an adherend 
delamination or a crack in the adhesive layer. 
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Appendix. Beam Theory 

Consider the single-lap joint structural idealization in Figure 12. Classical linear 
and nonlinear beam theory will be used to predict the moment and strain 
distributions along the length. 

The pinned connection at the left end is located at the center of the adhesive 
layer in the actual joint. The additional rigidity due to the two overlapping 
adherends is neglected. As shown in the free body diagram, the horizontal shear 
load P at the pin is statically equivalent to a central axial load and bending 
moment, 

where 
Ml = Phl (W 

hi = (h + h a ) / 2  

h = adherend thickness 

ha = adhesive thickness 

It turns out that a tensile load acts normal to the adhesive layer, which is shown 
as the vertical pin reaction V. Overall moment equilibrium gives the grip moment 
as 

Mn= Mi - VL ( 2 A )  
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BONDED COMPOSITE JOINTS 39 

FIGURE 12 Structural idealization of a strap in the single-lap joint assembly. Top: Strap and 
idealized end conditions. Bottom: Free body diagram showing deformed strap centerline. 

Also, for any moment distribution M, the axial strain in the top surface layer is 

E~ = ( P / B h  - M h / 2 I ) / E  (3A) 

where B is the beam width and I = Bh3/12. 
Linear beam theory yields 

and 

which may be substituted into Eq. (3A) to find E ~ .  The linearly varying strain in 
Figure 3 is found to be in good agreement with this result. 

Accounting now for the effect of vertical displacement on the internal bending 
moment, we obtain from Fig. 12, 

M =M, - Pv + V ( x  - L )  (6A) 

where v is the centerline displacement in the y-direction. Using the standard 
equation EId2v/dr2 = -M we find 

d2v M, V ( x - L )  __ - k2v = - - - 
dx2 E l  EI 

where 
k2 = PI EI 

Solution of Eq. (7A), together with the boundary conditions at x = 0 and x = L ,  
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yields v(x). In turn, use of Eqs. (2a) and (6A) gives finally 

M = -sinh kx + tanh kL + cosh - M1 kL )coshkx (9A) 

(10A) 

V 
k 

Mo = Ml(1- E)/(cosh kL - 5)  
MI V =  - (cash kL - l)/(cosh kL - 5) 
L 

where 
E = sinh kL/kL 

One may verify that Eqs. (9A)-(llA) reduce to the linear results in Eqs. (4A) 
and (5A) when kL << 1, and that Eq. (3A) is in good agreement with the finite 
element predictions in Fig. 3 (except near the ends, x = 0 and x = L )  and in 
Figure 5. 
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